If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-44=0
a = 16; b = 0; c = -44;
Δ = b2-4ac
Δ = 02-4·16·(-44)
Δ = 2816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2816}=\sqrt{256*11}=\sqrt{256}*\sqrt{11}=16\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{11}}{2*16}=\frac{0-16\sqrt{11}}{32} =-\frac{16\sqrt{11}}{32} =-\frac{\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{11}}{2*16}=\frac{0+16\sqrt{11}}{32} =\frac{16\sqrt{11}}{32} =\frac{\sqrt{11}}{2} $
| 1/2c+17=32 | | .5c=15 | | -x-4=x/3+4 | | -(3)/(8)(x-24)+x=19 | | 3=2y^2+5y | | -3=-6x-3 | | (x+3)²=576 | | 114x=3/4 | | 114x=1/4 | | 10(x)-5=28 | | 1/4x=114 | | 3/4x=114 | | x/4=26.25 | | 4x=26.25 | | 20x-18=-8 | | x/5=9.4 | | 500=256-4a | | x-16=105 | | 2/3n+12=72 | | 1/5x+1/3=5(2/3x-5) | | 256=500-4a | | -1/7b-2/5=-2 | | -|3w|=24 | | w+6w−112=0 | | 3v+8=-1 | | 20n=6n+27 | | 3(n+10)=60 | | 6x-2+x+4=2x-3 | | 50=m-24 | | 8x+20=4x-10 | | 4(x+3)=3(3x-4) | | 5(x+2)=2x+16+2x |